The role of c-fos in cell death and regeneration of retinal ganglion cells.
نویسندگان
چکیده
PURPOSE To investigate the effect of c-fos on apoptotic cell death and regeneration of damaged retinal ganglion cells (RGCs) in tissue culture of retinal explants. METHODS Retinas from transgenic mice carrying the exogenous c-fos gene under the control of the interferon (IFN)-alpha/beta inducible Mx-promoter (Mx-c-fos), c-fos-deficient mice, and littermate control mice were dissected and cultured in a three-dimensional collagen gel culture system, followed by an analysis of TdT-dUTP terminal nick-end labeling (TUNEL) staining and measurement of neurites that emerged from explants. RESULTS Compared with littermate control mice, Mx-c-fos transgenic animals showed a higher ratio of TUNEL positivity in the RGC layer from early in the culture period that correlated with the small number of regenerating neurites. In contrast, the c-fos-null mutated mice showed a still-lower ratio of TUNEL-positive cells. Nevertheless, the number of regenerating neurites was significantly lower in the initial phase, although the drastic increase in density of neurite regeneration was observed in the late period of culture. CONCLUSIONS These findings suggest that c-fos is involved in both apoptotic cell death and regeneration of damaged RGCs. Elucidation of the precise c-fos-mediated cascade involved in RGC apoptosis and regeneration is significant in realizing neuronal survival and regeneration.
منابع مشابه
Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملStem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملRetinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 43 7 شماره
صفحات -
تاریخ انتشار 2002